Project Objectives:
- Simulation model for a battery electric vehicle
- University of Stuttgart (IVK) and the Center for Solar

Summer School Dates:
- Courses 1-3: 15. - 17.06.2016
- Course 4: 20. - 22.06.2016
- Course 5: 06. - 08.07.2016

Logistics:
Format and Delivery Method:
- Each course is a non-credit graduate level seminar, offered through lectures and lab sessions consisting of twenty hours.

Materials:
- A comprehensive set of notes will be provided on the first course day.

Location:
- FKFS, Pfaffenwaldring 12, 70569 Stuttgart, Germany

Accommodation:
- Commando Tagungshotel, Universitätsstraße 34, 70569 Stuttgart, Germany
- Please make your own reservations. Room allotment available until 1 June 2016.

Social Evening:
- Coffee breaks, lunch on every full course day and dinner on a social evening are included.

Catering:
- On the first or second evening of the course there will be a social get together during the evening. Reservations are requested.

Mode of Payment:
- By bank transfer upon invoice or by credit card.

Group Discounts:
- 2 participants of the same organization registering at the same time: 10% off registration.
- 3 participants of the same organization registering at the same time: 15% off registration.

Cancellation Policy:
- Cancellation charge 50 € for cancellations until 6 May 2016. In case of cancellation after this date full participation fee will be charged.

Registrations:
- Please make your own reservations. Room allotment available until 1 June 2016.

Accommodation:
- Commando Tagungshotel, Universitätsstraße 34, 70569 Stuttgart, Germany

Location:
- FKFS, Pfaffenwaldring 12, 70569 Stuttgart, Germany

Contact:*
- Dr. Ing. Michael Grimm
- Phone: +49 711 685-68123
- Pfaffenwaldring 12

Registration:
Stuttgart International Summer School

Please fax or email until 1 June 2016 to:

- Franziska Schubert
- Fax: +49 711 685-65710
- franziska.schubert@fkfs.de

Family and first name

Company/Institute

Postal code/City

Function

Street/P.O. box

Country

Phone, Fax

E-mail

Invoicing address (if different from above address)

Mode of Payment:
- By bank transfer upon invoice or by credit card.

VAT ID no.

Date, Signature
Course 1: System Integration and Simulation of Hybrid Electric Vehicles

Learn HEV System Simulation Methods for SIL and HIL Development

Course Objectives:

- Understand the design and implementation of real-time simulation models for hybrid electric vehicles
- Learn the principles of system integration and simulation in the context of hybrid electric vehicles
- Gain experience in modeling and simulation of hybrid electric vehicles using commercial tools

Course 2: Hybrid Electric Vehicles: Control and Optimization

Hybrid Electric Vehicles: Theory and Applications

Course Objectives:

- Learn the fundamentals of control and optimization in hybrid electric vehicles
- Understand the principles of rule-based control and optimization for hybrid electric vehicles
- Explore the application of dynamic programming in hybrid electric vehicle control

Course 3: Energy Storage Systems for E-Mobility

Introduction to Energy Storage Systems for Electric Vehicles

Course Objectives:

- Learn the design and implementation of energy storage systems for electric vehicles
- Understand the principles of battery management and optimization in electric vehicles
- Explore the application of control strategies for energy storage systems in electric vehicles

Course 4: Vehicle Aerodynamics and Acoustics

Know how to Measure, Testing and Technique

Course Objectives:

- Understand the principles of aerodynamics and acoustics in vehicle design
- Learn how to perform aerodynamic and acoustic measurements in real-world conditions
- Explore the application of Computational Fluid Dynamics (CFD) and Experimental Techniques in vehicle testing